Evaluation in Natural Language Generation: Lessons from Referring Expression Generation

نویسندگان

  • Jette Viethen
  • Robert Dale
چکیده

As one of the most well-defined subtasks in Natural Language Generation (NLG), the generation of referring expressions looks like a strong candidate for piloting shared evaluation tasks. Different to other areas of Natural Language Processing, it is still unclear what benefit the introduction of such tasks might have for the field of NLG. Based on an earlier evaluation of a number of well-established algorithms for the generation of referring expressions, this paper explores several problems that arise in designing evaluation for this task, and identifies general considerations that need to be met in evaluating Natural Language Generation subtasks. RÉSUMÉ. La génération d’expressions référentielles, une des sous-tâche de la génération automatique de textes les mieux définies, apparaît comme une candidate sérieuse pour la mise en place de tâches d’évaluation partagée, dans un domaine du traitement automatique des langues où la question de l’intérêt de ces tâches reste ouverte. Sur la base des résultats d’une évaluation de certains des principaux algorithmes connus de génération d’expressions référentielles, cet article explore plusieurs problèmes posés par l’évaluation et présente quelques considérations d’ordre général à prendre en compte lors de l’évaluation des sous-tâches de la génération automatique de textes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards the Evaluation of Referring Expression Generation

The Natural Language Generation community is currently engaged in discussion as to whether and how to introduce one or several shared evaluation tasks, as are found in other fields of Natural Language Processing. As one of the most welldefined subtasks in NLG, the generation of referring expressions looks like a strong candidate for piloting such shared tasks. Based on our earlier evaluation of...

متن کامل

Intrinsic vs. Extrinsic Evaluation Measures for Referring Expression Generation

In this paper we present research in which we apply (i) the kind of intrinsic evaluation metrics that are characteristic of current comparative HLT evaluation, and (ii) extrinsic, human task-performance evaluations more in keeping with NLG traditions, to 15 systems implementing a language generation task. We analyse the evaluation results and find that there are no significant correlations betw...

متن کامل

Attribute Selection for Referring Expression Generation: New Algorithms and Evaluation Methods

Referring expression generation has recently been the subject of the first Shared Task Challenge in NLG. In this paper, we analyse the systems that participated in the Challenge in terms of their algorithmic properties, comparing new techniques to classic ones, based on results from a new human task-performance experiment and from the intrinsic measures that were used in the Challenge. We also ...

متن کامل

Modeling Context in Referring Expressions

Humans refer to objects in their environments all the time, especially in dialogue with other people. We explore generating and comprehending natural language referring expressions for objects in images. In particular, we focus on incorporating better measures of visual context into referring expression models and find that visual comparison to other objects within an image helps improve perfor...

متن کامل

Referring-Expression Generation Using a Transformation-Based Learning Approach

A natural language generation system must generate expressions that allow a reader to identify the entities to which they refer. This paper describes the creation of referring-expression (RE) generation models developed using a transformation-based learning approach. We present an evaluation of the learned models and compare their performance to the performance of a baseline system, which alway...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • TAL

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2007